首页 / 产品列表 / 细胞能量代谢分析仪
代谢监测 / 细胞能量代谢

细胞能量代谢分析仪

Lucid Scientific
Resipher
Resipher细胞能量代谢分析系统是在标准孔板中直接精确地测试样本的耗氧量。其采用了高分辨率动态光学氧气传感器,对细胞无干扰。仪器设计小巧,紧凑,操作简易。带样本的孔板放置在测试环境中后,直接把带探针的盖子直接插入即可,无需再转移样本,消除了环境改变的影响。

产品详情介绍

总览

Resipher 细胞能量代谢分析系统是在标准孔板中直接精确地测试样本的耗氧量。该系统采用了高分辨率动态光学氧气传感器,对细胞无干扰。仪器设计小巧,紧凑,操作简易。将含样本的孔板放置在测试环境中后,直接把带探针的盖子插入即可,无需再次转移样本,因此可以消除环境改变造成的影响。


Resipher细胞能量代谢分析系统软件为网格化设计可以对每个孔板内的样本一一对应监测,并对其快速、可视化地读取和分析数据。最终通过电脑或移动终端远程实时产看实验数据,获取细胞状态。


Resipher采用高分辨率光学氧气传感器,测定细胞培养中的耗氧量及氧环境的变化。


Resipher是一款手持便携式设备,将其放置于96孔板上,再置于培养箱中,即可完成对孔板内的样品的测试。 实验只需将无菌带光纤探针的盖子与Resipher主控制盒连接,盖子上的探针就可以直插入培养基中内进行信号采集。微型探针直径500 μm,对细胞织无损伤。


细胞耗氧量是通过培养基中的氧浓度的梯度变化来直观反应的。通过动态扫描,读取培养基中的氧浓度的梯度变化,再通过信号处理和计算得出实时的细胞耗氧量数值。


数据记录仪放置在培养箱外,可扩展连接8个主控制盒。软件为网格化设计即对每个孔板内的样本一一对应分析,实现对每个样本的监测,可视化快速分析。


除了耗氧量外,也可获取氧气浓度、培养箱温度、相对湿度、大气压、设备运行状态和其它环境因素参数。

 

产品特征

  • 高灵敏度传感器,精准度高,误差小。

  • 小巧紧凑,不占空间,兼容大多数培养箱。

  • 精巧设计,无菌光纤探针的盖子。置于孔板和主控制盒之间。

  • 兼容各品牌的标准 96孔板,目前提供每孔板32通道探针。


  • 实时连续监测分析

  • 即插即用式USB-C连接

  • 非侵入式测试

  • 可扩展通道数

参考文献

BIOMATERIALS ENGINEERING

Rabussier, G.; Bunter, I.; Bouwhuis, J. et. al. (2023) Healthy and diseased placental barrier on-a-chip models suitable for standardized studies, Acta Biomaterialia.

 

CELLULAR BEHAVIOR IN HYPOXIA

Smith, M.; Yang, F.; Griffiths, A. et. al. (2023) Redox and metal profiles in human coronary endothelial and smooth muscle cells under hyperoxia, physiological normoxia and hypoxia: Effects of NRF2 signaling on intracellular zinc, Redox Biology, 62, 102712.

 

LUNAR DUST

Chang, J.H.; Xue, Z.; Bauer, J. et. al. (2023) Artificial Space Weathering to Mimic Solar Wind Enhances the Toxicity of Lunar Dust Simulants in Human Lung Cells, Authorea.

 

CANCER THERAPY

Mohan, A.; Griffith, K.A.; Wuchu, F. et. al. (2023) Devimistat in combination with gemcitabine and cisplatin in biliary tract cancer: Pre-clinical evaluation and phase 1b multicenter clinical trial (BilT-04), Clin Cancer Res ,CCR-23-0036.

 

IMMUNOTHERAPY AND CANCER METABOLISM

Bell, H.; Huber, A.; Singhal, R. et. al. (2023) Microenvironmental ammonia enhances T cell exhaustion in colorectal cancer, Cell Metabolism, 35, 134-149.

 

EFFECTS OF OXYGEN AVAILABILITY ON CELL METABOLISM

Tan, J.; Virtue, S. et al. (2022) Oxygen is a critical regulator of cellular metabolism and function in cell culture. bioRxiv.

 

BACTERIAL ANTIBIOTIC RESISTANCE

Palomino, A., Gewurz, D., DeVine, L. et al. (2023) Metabolic genes on conjugative plasmids are highly prevalent in Escherichia coli and can protect against antibiotic treatment. ISME J. 17, 151

 

BIOPRINTED 3D MICROALGAE CONSTRUCTS

Dani, S., Windisch, J., XM, V. G., Bernhardt, A., Gelinsky, M., Krujatz, F., & Lode, A. (2022). Selection of a suitable photosynthetically active microalgae strain for the co-cultivation with mammalian cells. Frontiers in Bioengineering and Biotechnology, 10, 994134.

 

CANCER METABOLIC PATHWAY

Achreja, A., Yu, T., Mittal, A. et al. (2022). Metabolic collateral lethal target identification reveals MTHFD2 paralogue dependency in ovarian cancer. Nature Metabolism, 4, 1119–1137.

 

MITOCHONDRIAL METABOLISM IN HYPOXIC CONDITIONS

Salaroglio, I. C., Belisario, D. C., Akman, M., La Vecchia, S., Godel, M., Anobile, D. P., Ortone, G., Digiovanni, S., Fontana, S., Costamagna, C., Rubinstein, M., Kopecka, J., & Riganti, C. (2022). Mitochondrial Ros Drive resistance to chemotherapy and immune-killing in hypoxic non-small cell lung cancer. Journal of Experimental & Clinical Cancer Research, 41, 243

 

MITOCHONDRIAL DYSFUNCTION

Shu, D. Y., Frank, S. I., Fitch, T. C., Karg, M. M., Butcher, E. R., Nnuji-John, E., Kim, L. A., and Saint-Geniez. M. (2022) Dimethyl Fumarate Blocks Tumor Necrosis Factor-Alpha-Driven Inflammation and Metabolic Rewiring in the Retinal Pigment Epithelium. Front. Mol. Neurosci. 15:896786.

 

MITOCHONDRIAL ELECTRON TRANSPORT

Spinelli, J. B., Rosen, P. C., Sprenger, H. G., Puszynska, A. M., Mann, J. L., Roessler, J. M., Cangelosi, A. L., Henne, A., Condon, K. J., Zhang, T., Kunchok, T., Lewis, C. A., Chandel, N. S., & Sabatini, D. M. (2021). Fumarate is a terminal electron acceptor in the mammalian electron transport chain. Science, 374(6572), 1227–1237.

 

CARDIOMYOCYTE METABOLOMICS

Abouleisa, R. R., McNally, L., Salama, A. B. M., Hammad, S. K., Ou, Q., Wells, C., Lorkiewicz, P. K., Bolli, R., Mohamed, T. M., & Hill, B. G. (2021). Cell cycle induction in human cardiomyocytes is dependent on biosynthetic pathway activation. Redox Biology, 46, 102094.

 

CARDIOMYOCYTE METABOLOMICS

McNally, L. A., Altamimi, T. R., Fulghum, K., & Hill, B. G. (2021). Considerations for using isolated cell systems to understand cardiac metabolism and biology. Journal of Molecular and Cellular Cardiology, 153, 26–41.

 

MITOCHONDRIAL DYSFUNCTION

Mohiuddin, M., Choi, J. J., Lee, N. H., Jeong, H., Anderson, S. E., Han, W. M., Aliya, B., Peykova, T. Z., Verma, S., García, A. J., Aguilar, C. A., & Jang, Y. C. (2020). Transplantation of Muscle Stem Cell Mitochondria Rejuvenates the Bioenergetic Function of Dystrophic Muscle. bioRxiv.