专为小动物模型成像而设计,集成气体麻醉和温度控制以及高灵敏度sCMOS相机的紧凑型结构,460-1320nm波长范围内获取共配准荧光和光声信号,获取高分辨率深层组织3D图像。每次扫描可以使用多个激发波长,多模态系统可以同时获取大体积(30-60 cm3)的光声和荧光数据,可以在感兴趣的区域内进行光谱分析。除了 3D 分子图谱外,TriTom 还可以对体内生理参数进行空间解析评估,例如体积血含量和氧合情况,而无需造影剂。TriTom 还为 460 nm 至 1320 nm 激发的多种荧光团和其他类型的分子探针提供定量成像。凭借如此多功能的成像能力,TriTom 系统非常适合广泛的临床前应用,包括肿瘤、毒理学、发育生物学、组织工程和再生、神经科学、心血管成像,以及药物、疗法和光学和荧光成像探针的开发。
集成了3D 光声和荧光断层扫描技术的紧凑型台式设计
大体积(30-60 cm3)快速成像扫描(<36 秒),具有出色的分子灵敏度
以高空间分辨率(高达 150 µm)对解剖、功能和分子体积进行精确的 3D 配准
可在整个光谱范围内调节光学激发波长,可在一次扫描中实现多种波长
高灵敏度 sCMOS 荧光相机,配备标准发射滤光片,可覆盖常用的荧光探针
集成气体麻醉管线和可调节小鼠支架,操作方便,可重复进行体内纵向研究
单次扫描评估多个微样本(50 µL 或更少体积),加速造影剂开发,避免浪费
用户友好的集成软件,旨在最大限度地缩短实验时间,并在几秒钟内重建大规模体积
开放数据格式,允许使用第三方软件进行图像重建和数据管理
I. B. Belyaev et al., "Laser-Synthesized Germanium Nanoparticles as Biodearadable Material for Near.Infrared Photoacoustic lmaging and Cancer Phototherapy," AdvSci 2307060, 2024, doi: 10.1002/advs.202307060.
R. M. Cam, C. Wang, w. Thompson, S. A. Ermilov, M. A. Anastasio, and u. Villa, "Spatiotemporal lmageReconstruction to Enable High-Frame Rate Dynamic Photoacoustic Tomography with Rotating-Gantry Volumetric lmagers," ArXiv, 2023, doi: 10.48550/arXiv.2310.00529.
K. Huda, D. J. Lawrence, w. Thompson, S. H. Lindsey, and C. L. Bayer, "in vivo noninvasive systemicmyography of acute systemic vasoactivity in female pregnant mice," Nature Communications, vol14,no.1,2023,doi: 10.1038/s41467-023-42041-8.
V. D. Vincely and C. L. Bayer, "Functional photoacoustic imaging for placental monitoring: A minireview," lEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, pp. 1-1, 2023, doi.10.1109/tuffc.2023.3263361.
W. R. Thompson et al., "Characterizing a photoacoustic and fluorescence imaging platform forpreclinical murine longitudinal studies," 1. Biomed. Opt, vol. 28, no. 3, p. 036001, 2023, doi:10.1117/1.JBO.28.3.036001.
M. Delcroix, A. Reddy Marri, S. Parant, P. C. Gros, and M. Bouché, "Water-soluble Fe(l) complexes fortheranostic application: Synthesis, photoacoustic imaging and photothermal conversion," Eur. ..Inorg.Chem,, vol.26, no.27,2023, doi: 10.1002/eiic.202300138.
S. Singh et al., "Size-tunable lCG-based contrast agent platform for targeted near-infraredphotoacoustic imaging," Photoacoustics, vol. 29, p.100437, 2023, doi: 10.1016/i.pacs.2022.100437
Z. Zhao, c. B. Swartchick, and J. Chan, "Targeted contrast agents and activatable probes forphotoacoustic imaging of cancer," Chem Soc Rev, vol. 5l, no.3, pp. 829-868, 2022, doi.10.1039/d0cs00771d.
J. Kim, A. M. Yu, K. P. Kubelick, and S. Y. Emelianov, "Gold nanoparticles conjugated with DNAaptamer for photoacoustic detection of human matrix metalloproteinase-9," Photoacoustics, vol. 25p.100307, 2022, doi: 10.1016/i.pacs.2021.100307.
M. R. Chetyrkina et al., "Carbon Nanotube Microscale Fiber Grid as an Advanced Calibration Systemfor Multispectral Optoacoustic lmaging," Acs Photonics, vol. 9, no.10, pp. 3429-3439, 2022, doi:10.1021/acsphotonics.2c01074.
M. D. Mokrousov et al, "indocyanine green dye based bimodal contrast agent tested byphotoacoustic/fluorescence tomography setup," Biomed. Opt. Express, vol. 12, no. 6, p. 3181, 2021, doi.10.1364/boe.419461.
A. Juronis and M. Jasinskas, "Breakthrough instruments and products PhotoSonus M+ laser forphotoacoustic imaging," Review of Scientific instruments, vol. 92, no. 5, p. 059502, 2021, doi.10.1063/5.0053559.
K. Huda, c. wu, J. G. Sider, and c. L, Baver, "Spherical-view photoacoustic tomography for monitoringin vivo placental function," Photoacoustics, vol. 20,p.100209, 2020, doi: 10.1016/i.pacs.2020.100209
E. M. Donnelly, K. P. Kubelick, D.s. Dumani, and S. Y. Emelianov, "Photoacoustic lmage-GuidedDelivery of Plasmonic-Nanoparticle-Labeled Mesenchymal Stem Cells to the Spinal Cord," NanoLetters, vol.18, no.10, pp.6625-6632,2018, doi: 10.1021/acs.nanolett.8b03305