Home / Product / HypoxyLab™
Hypoxia Incubator/workstation / Hypoxia Incubator/workstation

HypoxyLab™

Oxford Optronix
HypoxyLab
HypoxyLab™
Bench-top physiological oxygen incubator and workstation

Description

Overview

In the field of tissue culture, there is a rapidly growing appreciation that a physiological cellular oxygen environment is essential for the analysis of cellular processes with respect to function and metabolism.

Rising to this challenge, Oxford Optronix has developed the HypoxyLab™ - a fully-featured, ergonomically engineered and easy to use normoxia/hypoxia workstation that provides a HEPA-filtered environment in which oxygen, carbon dioxide, temperature and humidity can be precisely controlled.

In short, HypoxyLab™ is a compact hypoxia workstation and incubator for everyday use, suitable for applications including,

  • Cancer, radiation and apoptosis cell biology

  • Stem cell research

  • Neurosciences research

  • Human virology research

  • Multidisciplinary drug development and proteomics

* 5-year manufacturer's warranty is conditional upon annual preventative maintenance servicing

Features


True physiological oxygen (Physoxia)

Rapid, efficient, accurate

In situ dissolved oxygen from media and cultures

Live cell imaging

Contamination control

Touchscreen display

Automated oxygen profiles

Data logging

Easy-entry system

Lightweight cover / Ergonomic design

Cost of ownership advantage


Journal Citations

(Updated: June 2021)

Rapid Evaluation of Novel Therapeutic Strategies Using a 3D Collagen-Based Tissue-Like Model. Maury P, Porcel E, Mau A, Lux F, Tillement O, Mahou P, Schanne-Klein MC, and Lacombe S (2021). Front Bioeng Biotechnol. 2021 Feb 16;9:574035. doi: 10.3389/fbioe.2021.574035. eCollection 2021

Differentiated cells in prolonged hypoxia produce highly infectious native-like hepatitis C virus particles (2021). Cochard J, Bull-Maurer A, Tauber C, Burlaud-Gaillard J, Mazurier F, Meunier J-C, Roingeard P and Chouteau P. Hepatology. 2021 Mar 4. doi: 10.1002/hep.31788. Online ahead of print

Impact of the acidic environment on gene expression and functional parameters of tumors in vitro and in vivo (2021). Rauschner M, Lange L, Hüsing T, Reime S, Nolze A, Maschek M, Thews O & Riemann A. J Exp Clin Cancer Res, 40:10

SMARCB1 Promotes Ubiquitination and Degradation of NR4A3 via Direct Interaction Driven by ROS in Vascular Endothelial Cell Injury (2020). Lu B, et. al. Oxid Med Cell Longev. 2020 Oct 23;2020:2048210

Hypoxia Drives Dihydropyrimidine Dehydrogenase Expression in Macrophages and Confers Chemoresistance in Colorectal Cancer (2020). Malier M, Court M, Gharzeddine K, Laverierre M-H, Marsili S, Thomas F, Decaens T, Roth G & Millet A. www.biorxiv.org/content/10.1101/2020.10.15.341123v1

Lactate preconditioning promotes a HIF-1α-mediated metabolic shift from OXPHOS to glycolysis in normal human diploid fibroblasts (2020). Kozlov AM, Lone A, Betts DH & Cumming RC. Nature Scientific Reports 10, 8388

Hypercapnia potentiates HIF-1α activation in the brain of rats exposed to intermittent hypoxia (2020). Tregubab PP, Malinovskayaa NA, Morguna AV, Osipovaa ED, Kulikovb VP, Kuzovkova DA, and Kovzelevc PD. J. Resp 278, 103442

Inhibition of Carbonic Anhydrase IX by Ureidosulfonamide Inhibitor U104 Reduces Prostate Cancer Cell Growth.... (2019). Riemann A, Güttler A, Haupt V, Wichmann H, Reime S, Bache M, Vordermark D and Thews O. Oncology Research

Proteomic Analysis of Human Macrophage Polarization Under a Low Oxygen Environment (2019). Court M, Malier M and Millet A. J. Vis. Exp.

The effect of hypoxia on ZEB1 expression in a mimetic system of the blood-brain barrier (2018). Leduc-Galindo D, Qvist P, Tóth AE, Fryland T, Nielsen MS, Børglum AD and Christensen JH. Microvascular Research

Acidic extracellular environment affects miRNA expression in tumors in vitro and in vivo (2018). Riemann A, Reime S, and Thews O. Int J Cancer

Induction and Assessment of Hypoxia in Glioblastoma Cells In Vitro (2018). Gagner JP, Lechpammer M and Zagzag D. Methods Mol Biol.

Tumor Acidosis and Hypoxia Differently Modulate the Inflammatory Program: Measurements In Vitro and In Vivo (2017). Riemann A, Reime S and Thews O. Neoplasia

Glucose Metabolism and Oxygen Availability Govern Reactivation of the Latent Human Retrovirus HTLV-1 (2017). Kulkarni A, Mateus M, Thinnes CC, McCullagh JS, Schofield CJ, Taylor GP and Bangham CRM. Cell Chemical Biology